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Introduction
Achieving high resolution fast volumetric ultrasound imaging is challenging because spatial resolution is reduced by: 

• The use of plane-or divergent transmit fields 

• For matrix probes, implementation of micro-beamforming techniques, needed to achieve a manageable data rate and channel count

To improve image quality powerful receive data processing is needed.

Recently, deep learning-based beamformers have been employed to improve resolution. The deep learning based adaptive beamformer ABLE [1]  and the 
Delay-And-Neural-Network (DANN) [2] method both showed improved resolution in 2D ultrasound images w.r.t. the conventional delay-and-sum (DAS). 

Here we used simulations to create a high-resolution training target for large 3D arrays, that is not limited by the capability of current beamformers. We
propose a modified ABLE beamformer with increased receptive field, trained on the high-resolution targets.

Methods
• A real adult matrix TEE probe with split transmit receive design [2]

consisting of 2048 receive elements grouped in 128 sub-arrays of 4x4
elements was used to acquire in vitro images of the CIRS phantom.

• The original 3D TEE probe and a larger array with 2.25 times the
number of receive elements were simulated in Field II with 3 different
volumes of point scatterers.

• The ABLE network is modified by increasing the kernel size such that
apodization weights for a voxel are adaptively calculated based on the
time-of-flight corrected signals of a small region of voxels.

• Voxels reconstructed with the DAS beamformed data of the larger
array are used as training targets and time-of-flight corrected micro-
beamformed channel data of the simulated original 3D TEE array is
used as the input.
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Figure 1. Signals received by the original 3D TEE are micro-beamformed,
then second stage time-of flight correction is applied. A neural network
similar to ABLE, but with increased receptive field is used to calculate the
apodization weights and final voxel value. During training DAS
beamformed images acquired with simulated acquisitions of a larger array
are used as target data.
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Results
ABLE improves resolution compared to DAS in simulations and in the
CIRS phantom (Fig. 2), without decreasing the GCNR (0.67 for
(modified) ABLE, 0.6 for DAS).

Fig 2. Left column) 
Results on simulated 
data and FWHM of the 
middle scatterer. Right 
column) Results on the 
CIRS phantom, circles 
indicate the high and 
low intensity region used 
to determine GCNR. The 
FWHM of the scatterers 
is shown for DAS and 
(modified) ABLE 

Conclusion
The resolution 
improvement obtained 
with a (modified) 
ABLE network trained 
on  simulation data 
generalizes to in vitro 
imaging. 


