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Introduction

The use of plane-or divergent transmit fields

To improve 1mage quality powerful receive data processing 1s needed.

Achieving high resolution fast volumetric ultrasound imaging 1s challenging because spatial resolution 1s reduced by:

For matrix probes, implementation of micro-beamforming techniques, needed to achieve a manageable data rate and channel count

Recently, deep learning-based beamformers have been employed to improve resolution. The deep learning based adaptive beamformer ABLE [1] and the
Delay-And-Neural-Network (DANN) [2] method both showed improved resolution in 2D ultrasound images w.r.t. the conventional delay-and-sum (DAS).

Here we used simulations to create a high-resolution training target for large 3D arrays, that 1s not limited by the capability of current beamformers. We

propose a modified ABLE beamformer with increased receptive field, trained on the high-resolution targets.
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A real adult matrix TEE probe with split transmit receive design [2]
consisting of 2048 receive elements grouped 1n 128 sub-arrays of 4x4
elements was used to acquire 1n vitro images of the CIRS phantom.

The original 3D TEE probe and a larger array with 2.25 times the
number of receive elements were simulated 1in Field II with 3 different
volumes of point scatterers.

The ABLE network 1s modified by increasing the kernel size such that
apodization weights for a voxel are adaptively calculated based on the
time-of-flight corrected signals of a small region of voxels.

The resolution
improvement obtained
with a (modified)
ABLE network trained
on simulation data
generalizes to 1n vitro
Imaging.
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