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CONTRIBUTION

We describe a scalable distributed algorithm for computing the solutions of the so-called MAXVAR canonical
correlation analysis problem in a tree-topology network. Those solutions provide a basis to the subspace of
jointly observed signal components.

CENTRALIZED PROBLEM

>

>

K nodes observe the M;.-channel signals a;..

Find W3’s € C€*Mr and s, a Q-dimensional ran-
dom signal, minimizing
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s* = %WH x 1s a basis to the ()-dimensional
signal subspace most adequatly describing cross-
covariance between the nodes.
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W* of (1) can be shown to satisfy the generalized
eigenvalue decomposition:
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W * is also solution to the optimization problem:

min Tr (W"Rp, W) (3a)
%4
st.  WHYR,.W = K-Ig (3b)

where Rp = Blkdiag(Rz,%,,..., R ).
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Minimizing (1) is commonly referred to as the
MAXVAR problem.

DISTRIBUTED ALGORITHM

>

Each node k share its observations ;. compressed
by some matrix Cé{ c C*Mr with some node q.

Node ¢ cannot solve (3) without the raw observa-
tions, instead 1t solves

min Tr (VA"/'HRDQc _ W) (4a)
W q<-q
S.T. WHququ — KQIQ (4b)

with Z, = [(CHz)T -+ &l - (Clzk)T|T

Problem (4) is equivalent to (3) with the addi-
tional constraints Wy € C(Cy) Vk # q.

Each node solves this problem in turns, updating
its compression matrix as C,i“ = C L Wi.

Solution of each iteration is also in the constraint
set of the next iteration — monotonic increase of
the objective and lim; ,., C; = W .

Tree-Topology Networks

>

We split the nodes in disjoint sets .y whose com-
pressed observations will be summed and trans-
mitted together.

This is equivalent to (3) with additional con-
straints Wi, € C(Ck,,) where Wi, and Cx,,
contain the corresponding stacked matrices of

nodes in /C(.).

NODE OPERATION IN TREE-TOPOLOGY NETWORKS

The nodes operate in two states:

From children

Aggregating node k
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compressed observations to the updating node.

From children

Updating node ¢
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Updating when solving the local problem, Aggregating when relaying
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ILLUSTRATIVE EXAMPLE IN A TREE-TOPOLOGY NETWORK
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Node p is the current updating node. We distinguish
three steps during iteration ¢:
I. Aggregation:

1. k1 sends its compressed observations C’,’f T,
to p along with the covariance matrix of its
compressed variables C’}f Ry, ., ,il

2. ko collects and sums the observations of the
nodes in By,, and sends ZkeBkzp C'Hxy top

DISTRIBUTED ALGORITHM (CONT.)

> The nodes solve the local problem in turns:

min Tr (WHRE W) (5a)
1%%
S.t. WHRiqquNV — K2IQ (5b)
where Ry = Blkdiag(Rg, 2, Rec, s - Reg,
2%11(1 Zifq — [QCégy (3%;1 C%;n],—r1 ‘Afitll Cic =

Zkelc Cfazk

> cx and Ryx, can be computed through in-network
sumiing.

> The sets are chosen as the subtrees which would
be disconnected would the link between ¢ and one
of its neighbors be removed.

> There is a single update matrix W(.) per subtree.

> The current esitmate of s* can be obtained as

Al 1 1H _k
8 _EZCk T (6)

along with the sum of associated compressed
variables covariance matrices

3. k3 recursively collects and sums the ob-
servations of the nodes in Bj,, and sends
ZkEBkSp C'"x;, to p along with the sum of as-

soclated compressed variables covariance ma-
trices
II. Local solution:
4. p computes the solutions
W =W WE W,? W/ of (5) and sends
1 2 i 3
them to the corresponding subtrees.
I11. Update:
5. p updates its compression matrix as
S
Cp,” =W,
6. k1 updates its compression matrix as
C,™ =CiWwy,
7. Node in subtree By,, update their compression
matrices as C;' = CL W,
8. Node in subtree Byg,, update their compression
matrices as C;' = CL W,

PERFORMANCE
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[teration

> Validated with Monte-Carlo (MC) simulations in
a tree-topology network with a branching tactor

of 3 and M, = 6. Depicted cost is C* =1 j((“j“,/:))

> Complexity of local problems at node k is
O (M + QIN%])?) (INk|: number of neighbors)

and

> Average communication cost over each link is

O(Q + T)Q) (T: window length).



