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Eindhoven University of Technology

b.skoric@tue.nl

Quantum digital signatures with smaller keys

Boris Škorić
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Information-theoretically secure signatures

All practical signature schemes depend on assumptions about the computational hardness of certain problems. Unconditionally
secure signatures have been designed [1, 2, 3], but they require a fixed set of participants and involve a large amount of communication.
Furthermore, they require either a trusted third party or secret channels between pairs of participants.
Gottesman and Chuang [4] introduced quantum digital signatures, which are also unconditionally secure but alleviate some of these
disadvantages. Mind you, now the verifiers are supposed to have long-term quantum memory. At some point in the future this may
become realistic.
Our contribution is a variant of the Gottesman-Chuang scheme that requires less quantum memory. It is based on a different use of
fingerprinting states and a generalisation to non-binary alphabets.

1. The Lamport signature

How to sign a bit; based on one-way function f [5].
• Private key k0, k1. Public key (P0, P1) with Pi = f (ki).

• Signing a message m ∈ {0, 1}: publish km.

• Verification: check if hashing the published km yields Pm.

• Keys are discarded after a single use.
The security is based on the assumption that f is difficult to invert. Quantum digital
signatures are inspired by the Lamport scheme, but they make use of information-theoretic
one-wayness.

2. Gottesman-Chuang signature

How to sign a bit; based on the one-wayness of quantum state preparation [4].

• Private key k0, k1 is classical. Public key |P0〉, |P1〉 consists of two quantum states.
|P0〉 = |F (k0)〉, |P1〉 = |F (k1)〉. Here F is a mapping that embeds a bitstring in a Hilbert
space (e.g. fingerprinting states).

• Signing a message m ∈ {0, 1}: Publish km.

• Verification: Project state |Pm〉 onto direction F (km) and check if result is ‘1’.

• Keys are discarded after a single use.

In order to reduce false positives, each verifier gets multiple copies of the public key.

3. Fingerprinting states

Let H be a d-dimensional Hilbert space with basis |0〉, · · · , |d − 1〉. Let x ∈ {0, 1}d. The
fingerprinting state |F (x)〉 is defined as [6]

|F (x)〉 =
1√
d

d−1∑

j=0

(−1)xj|j〉. (1)

This state is created using d classical bits of information, but at most log dimH = log d
bits can be learned via measurement. |F (x)〉 is a compact representation of x that hides x.

4. Efficient Gottesman-Chuang

More efficient use of resources than public key repetition [4].
Message m ∈ {0, 1}K. Error-correcting code with codewords in {0, 1}N . Codeword cm.

• The bits of cm are individually signed as above; verifiers hold only one copy of each |P 〉.
• Verifier counts number of ‘0’ projection outcomes. Must be sufficiently low.

dmin ≈ T log T , with T = number of verifiers.
#qubits spent per message bit: more than log(T log T ).

5. Our scheme

Alphabet S = {0, . . . , S − 1}. Message m ∈ SK. Codeword Cm ∈ SN .

• Private key k1, . . . , kN , with ki ∈ {0, 1}d. Public key |P1〉 · · · |PN〉, with |Pi〉 = |F (ki)〉.
• Signing: For each i ∈ {1, . . . , N} reveal part of ki.

If Cm[i] = s then reveal ki except for a small window of width d/S at ‘position’ s.
The choice of window encodes a symbol in S .

• Verification: Project |Pi〉 onto the sum of all 2d/S fingerprinting states that are consistent
with the revealed part of ki. Number of ‘0’ outcomes must be sufficiently low.

dmin ≈ ST logST
#qubits

msg. bit
>

log(ST logST )

logS
(2)
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Security requirements

• Against malicious Alice. If Total distributed state by Alice passes swap / permute tests with
high prob. then Alice cannot ”open” di↵erent messages for di↵erent recipients.

• Malicious Bob. Even if you own all distributed public keys, you cannot create a fake signature

• Even if you own all distributed public keys and you have observed a valid signature, you cannot
forge signature on a di↵erent message.

• Gottesman has constants c1, c2. Let’s first consider c2=0, c2=1/M (any error leads to abort).

Main idea:

• Fingerprint (RRDPS) states |mu(cx)i, where cx is x encoded into codeword.

• Multiple issues of the same RRDPS state.

• Alice signs a symbol ”s” by revealing a substring of cx (or x itself?), where s determines the
choice of substring. Make sure that the allowed choices are su�ciently di↵erent from each other!

• Verification is projection measurement onto average state consistent with the revealed substring

Various gimmicks

• instead of repeating public key state, make use of codewords to deal with noise.

• Encode a message symbol as the one-out-of-N choice from N public keys. Alphabet has size
log N ; only one pubkey is expended. (Going to

�
N
t

�
does not improve things wrt

�
N
1

�
.) In order

for this trick to work, the order of Alice’s messages must be preserved/protected.

Idea: use a shift mechanism. When a pubkey has been spent a whole is created. Fill the hole
by shifting pubkeys from the right.
Example: Symbol 3 followed by symbol 7 means revealing  3 and then  8. On the other hand,
symbol 7 followed by symbol 3 would mean revealing  7 and then  3. Note that the set of
opened states depends on the order of the symbols; hence forgery-by-reordering fails.

Immediate questions

• How do Gottesman+Chuang deal with the possibility that Alice opens a di↵erent bit to di↵erent
verifiers?
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α = 1/S. Each curve was created by varying d. For comparison:
Gottesman-Chuang spends > 13.3 qubits per message bit at T = 1000 verifiers.

Discussion

• Increasing the data density by a factor log S only adds a term log S to the size of
a public key.

• The improvement factor 1/ logS in (2) due to the increased alphabet is hampered slightly
by the growing dmin ≈ ST logST , but overall it is favorable to increase S.

• The effect of allowing k to be opened in multiple ways is that forgery becomes easier.
This has to be counteracted by increasing the message length in order to achieve distin-
guishability between an attacker’s error rate and the genuine error rate.
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